

UNIFIED INTERNATIONAL MATHEMATICS OLYMPIAD (UPDATED)

CLASS - **7**

Question Paper Code : UM9279

KEY

1	2	3	4	5	6	7	8	9	10
D	С	D	В	А	D	С	В	В	А
11	12	13	14	15	16	17	18	19	20
А	D	D	А	В	С	А	А	С	В
21	22	23	24	25	26	27	28	29	30
С	D	С	В	А	А	В	А	D	С
31	32	33	34	35	36	37	38	39	40
(A,B,D)	(A,B,D)	(A,B,C)	(A,B,C)	(B,C,D)	В	С	С	С	D
41	42	43	44	45	46	47	48	49	50
С	А	С	D	D	D	В	В	А	С

EXPLANATIONS

MATHEMATICS - 1

1. (D) $x = 60^{\circ}$ [\because corresponding angles] $x + y = 180^{\circ}$

 $y = 180^{\circ} - 60^{\circ} = 120^{\circ}$

- 2. (C) Let the other number be x Given -36 + x = 23x = 23 + 36 = 59
- 3. (D) $10^2 = 8^2 + 6^2 \Longrightarrow 6$ cm, 8cm and 10cm are the sides of a right angled triangle

 $\therefore \quad \text{Area of right angled triangle} = \frac{1}{2} \times \text{product}$ of perpendiculars

$$= \frac{1}{2} \times 6 \text{ cm} \times 8 \text{ cm} = 24 \text{ cm}^2$$

- 4. (B) Given in $\triangle ABC$, $AB = AC \implies \angle C = \angle B = 50^{\circ}$ $\therefore \angle A = 180^{\circ} - \angle B - \angle C = 80^{\circ}$
- 5. (A) SSS criterion is used to construct equilateral triangle

6. (D) If
$$\frac{x}{y} < 1 \Longrightarrow \frac{y}{x} > 1$$

numbers = 112 / 10 = 11.2 8. (B) To construct a triangular pyramid it is required 4 equilateral triangles 9. (B) $x + y + y + z + z + x = 8 + 5 + 7 = 20$ 2x + 2y + 2z = 20 2(x + y + z) = 20 $x + y + z = \frac{20}{2} = 10$ 8 + z = 10 z = 10 - 8 = 2 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = $\overline{x}12.5x$ Given SP of 10 article = $\overline{x}12.5x$ \therefore SP of 12.5 article = $\frac{\overline{x}12.5x}{10}$ $= \overline{x}1.25x$ \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$	6		
numbers = 112 / 10 = 11.2 8. (B) To construct a triangular pyramid it is required 4 equilateral triangles 9. (B) $x + y + y + z + z + x = 8 + 5 + 7 = 20$ 2x + 2y + 2z = 20 2(x + y + z) = 20 $x + y + z = \frac{20}{2} = 10$ 8 + z = 10 z = 10 - 8 = 2 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = \overline{x} 12.5x Given SP of 10 article = \overline{x} 12.5x \therefore SP of 12.5 article = $\frac{\overline{x}$ 12.5x}{10} $= \overline{x}$ 1.25x \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x} 0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\overline{x}x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$	7.	(C)	Sum of first ten composite numbers = 112
required 4 equilateral triangles 9. (B) $x + y + y + z + z + x = 8 + 5 + 7 = 20$ 2x + 2y + 2z = 20 2(x + y + z) = 20 $x + y + z = \frac{20}{2} = 10$ 8 + z = 10 z = 10 - 8 = 2 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article $= \overline{x}12.5x$ Given SP of 10 article $= \overline{x}12.5x$ \therefore SP of 12.5 article $= \frac{\overline{x}12.5x}{10}$ $= \overline{x}1.25x$ \therefore Gain $= SP - CP = 1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given $(4x - 7) \text{ cm} = (2x + 5) \text{ cm}$ 4x - 2x = 5 cm + 7 cm 2x = 12 cm $x = 6 \text{ cm} \Rightarrow 2x + 5 = 17 \text{ cm}$ 13. (D) Middle odd number $= \frac{55}{5} = 11$ Next odd number $= 11 + 2 = 13$ Largest odd number $= 13 + 2 = 15$ 14. (A) Let principal be $\overline{x}x$ Amount $= \frac{41}{40}x$ $1 = A - P = \frac{41x}{40} - x$			Mean of sum of first ten composite numbers = 112 / 10 = 11.2
$2x + 2y + 2z = 20$ $2(x + y + z) = 20$ $x + y + z = \frac{20}{2} = 10$ $8 + z = 10$ $z = 10 - 8 = 2$ 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = \overline{x} 12.5x Given SP of 10 article = \overline{x} 12.5x \therefore SP of 12.5 article = $\overline{\frac{x}{12.5x}}$ \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $13 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\overline{x} x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$	8.	(B)	To construct a triangular pyramid it is required 4 equilateral triangles
$2(x + y + z) = 20$ $x + y + z = \frac{20}{2} = 10$ $8 + z = 10$ $z = 10 - 8 = 2$ 10. (A) Let CP of each article be ₹x $\therefore CP of 12.5 \text{ article} = ₹12.5x$ Given SP of 10 article = ₹12.5x $\therefore SP of 12.5 \text{ article} = ₹12.5x$ $\therefore Gain = SP - CP = 1.25x - x = 0.25x$ $\therefore Gain percentage$ $\frac{Gain}{CP} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm $4x - 2x = 5cm + 7 cm$ $2x = 12 cm$ $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$	9.	(B)	x + y + y + z + z + x = 8 + 5 + 7 = 20
$x + y + z = \frac{20}{2} = 10$ $8 + z = 10$ $z = 10 - 8 = 2$ 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = $\overline{x}12.5x$ Given SP of 10 article = $\overline{x}12.5x$ \therefore SP of 12.5 article = $\frac{\overline{x}12.5x}{10}$ $= \overline{x}1.25x$ \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6 cm \implies 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\overline{x}x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$			2x + 2y + 2z = 20
8 + z = 10 z = 10 - 8 = 2 10. (A) Let CP of each article be ₹x ∴ CP of 12.5 article = ₹12.5x Given SP of 10 article = ₹12.5x ∴ SP of 12.5 article = ₹12.5x ∴ Gain = SP - CP = 1.25x - x = 0.25x ∴ Gain percentage $\frac{Gain}{CP} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm ⇒ 2x + 5 = 17 cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = 11 + 2 = 13 Largest odd number = 13 + 2 = 15 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			2(x + y + z) = 20
z = 10 - 8 = 2 10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = $\overline{x}12.5x$ Given SP of 10 article = $\overline{x}12.5x$ \therefore SP of 12.5 article = $\frac{\overline{x}12.5x}{10}$ $= \overline{x}1.25x$ \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\overline{x}x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$			$x + y + z = \frac{20}{2} = 10$
10. (A) Let CP of each article be $\overline{x}x$ \therefore CP of 12.5 article = $\overline{x}12.5x$ Given SP of 10 article = $\overline{x}12.5x$ \therefore SP of 12.5 article = $\frac{\overline{x}12.5x}{10}$ $= \overline{x}1.25x$ \therefore Gain = SP - CP = $1.25x - x = 0.25x$ \therefore Gain percentage $\frac{Gain}{CP} \times = \frac{\overline{x}0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given ($4x - 7$) cm = ($2x + 5$) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6$ cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\overline{x}x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$			8 + <i>z</i> = 10
$\therefore CP of 12.5 article = ₹12.5x$ Given SP of 10 article = ₹12.5x $\therefore SP of 12.5 article = \frac{₹12.5x}{10}$ $= ₹1.25x$ $\therefore Gain = SP - CP = 1.25x - x = 0.25x$ $\therefore Gain percentage$ $\frac{Gain}{CP} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			<i>z</i> = 10 – 8 = 2
Given SP of 10 article = ₹12.5x ∴ SP of 12.5 article = $\frac{₹12.5x}{10}$ = ₹1.25x ∴ Gain = SP - CP = $1.25x - x = 0.25x$ ∴ Gain percentage $\frac{Gain}{CP} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹x Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$	10.	(A)	Let CP of each article be $\overline{\mathbf{x}}$
$\therefore \text{ SP of } 12.5 \text{ article } = \frac{12.5x}{10}$ $= 1.25x$ $\therefore \text{ Gain } = \text{SP} - \text{CP} = 1.25x - x = 0.25x$ $\therefore \text{ Gain percentage}$ $\frac{\text{Gain}}{\text{CP}} \times = \frac{10.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm $4x - 2x = 5cm + 7 cm$ $2x = 12 cm$ $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\frac{1}{4}x$ $Amount = \frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$			∴ CP of 12.5 article = ₹12.5x
= ₹1.25x ∴ Gain = SP - CP = $1.25x - x = 0.25x$ ∴ Gain percentage $\frac{Gain}{CP} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			Given SP of 10 article = $₹12.5x$
$\therefore \text{Gain} = \text{SP} - \text{CP} = 1.25x - x = 0.25x$ $\therefore \text{Gain percentage}$ $\frac{\text{Gain}}{\text{CP}} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			$\therefore \text{SP of 12.5 article} = \frac{\text{₹12.5}x}{10}$
$\therefore \text{Gain percentage} \\ \frac{\text{Gain}}{\text{CP}} \times = \frac{₹0.25x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			=₹1.25 <i>x</i>
$\frac{\text{Gain}}{\text{CP}} \times = \frac{\text{₹0.25}x}{x} \times 100 = 25\%$ 11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm x = 6 cm $\Rightarrow 2x + 5 = 17$ cm 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$		<i>.</i>	Gain = $SP - CP = 1.25x - x = 0.25x$
11. (A) Option 'A' is a pentagon but remaining three options are quadrilaterals 12. (D) Given (4x - 7) cm = (2x + 5) cm 4x - 2x = 5cm + 7 cm 2x = 12 cm $x = 6 cm \Rightarrow 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40} x$ $I = A - P = \frac{41x}{40} - x$		<i>.</i> .	Gain percentage
three options are quadrilaterals 12. (D) Given $(4x - 7) \text{ cm} = (2x + 5) \text{ cm}$ 4x - 2x = 5 cm + 7 cm 2x = 12 cm $x = 6 \text{ cm} \implies 2x + 5 = 17 \text{ cm}$ 13. (D) Middle odd number $= \frac{55}{5} = 11$ Next odd number $= 11 + 2 = 13$ Largest odd number $= 13 + 2 = 15$ 14. (A) Let principal be $\gtrless x$ Amount $= \frac{41}{40} x$ $I = A - P = \frac{41x}{40} - x$			$\frac{\text{Gain}}{\text{CP}} \times = \frac{\textcircled{0.25x}}{x} \times 100 = 25\%$
$4x - 2x = 5cm + 7 cm$ $2x = 12 cm$ $x = 6 cm \implies 2x + 5 = 17 cm$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x $Amount = \frac{41}{40} x$ $I = A - P = \frac{41x}{40} - x$	11.	(A)	Option 'A' is a pentagon but remaining three options are quadrilaterals
$2x = 12 \text{ cm}$ $x = 6 \text{ cm} \implies 2x + 5 = 17 \text{ cm}$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$	12.	(D)	Given $(4x - 7)$ cm = $(2x + 5)$ cm
$x = 6 \text{ cm} \implies 2x + 5 = 17 \text{ cm}$ 13. (D) Middle odd number = $\frac{55}{5} = 11$ Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x $I = A - P = \frac{41x}{40} - x$			4x - 2x = 5cm + 7 cm
13. (D) Middle odd number = $\frac{55}{5}$ = 11 Next odd number = 11 + 2 = 13 Largest odd number = 13 + 2 = 15 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x I = A - P = $\frac{41x}{40}$ - x			2x = 12 cm
Next odd number = $11 + 2 = 13$ Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be $\gtrless x$ Amount = $\frac{41}{40}x$ $I = A - P = \frac{41x}{40} - x$			$x = 6 \text{ cm} \implies 2x + 5 = 17 \text{ cm}$
Largest odd number = $13 + 2 = 15$ 14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x I = A - P = $\frac{41x}{40} - x$	13.	(D)	Middle odd number = $\frac{55}{5}$ = 11
14. (A) Let principal be ₹ x Amount = $\frac{41}{40}$ x I = A - P = $\frac{41x}{40}$ - x			Next odd number = 11 + 2 = 13
Amount = $\frac{41}{40}$ x I = A - P = $\frac{41x}{40}$ - x			Largest odd number = 13 + 2 = 15
$I = A - P = \frac{41x}{40} - x$	14.	(A)	Let principal be ${\mathfrak T} x$
			Amount = $\frac{41}{40}$ x
$I = \frac{x}{40}$			$I = A - P = \frac{41x}{40} - x$
			$I = \frac{x}{40}$

		$But I = \frac{PTR}{100} = \frac{x}{40}$
		$\frac{x \times R \times \frac{1}{4}}{100} = \frac{x}{40}$
		R = 10%
15.	(B)	In $\triangle ADC$, 70° + $\angle C$ + $\angle ADC$ = 180°
		∠C + ∠ADC = 180° - 70° = 110°
		But $y = \angle C + \angle ADC = 110^{\circ}$
16.	(C)	Given (side) ² = 196 cm ² = (14 cm) ²
	•••	Side = 14 cm
	•••	Diameter of the circle = 14 cm
	•••	Radius = $\frac{d}{2}$ = 7 cm
		Area of the circle = $\pi r^2 = \frac{22}{7} \times 7 \times 7 \text{ cm}^2$
		= 154 cm ²
		Remaining area = 196 $cm^2 - 154 cm^2 = 42 cm^2$
17.	(A)	$\frac{6}{7} = 0.857, \frac{7}{9} = 0.777$
		$\therefore \frac{95}{112} = 0.848, \frac{99}{112} = 0.883,$
		$\frac{3}{4} = 0.75, \frac{97}{112} = 0.866$
	<i>.</i> .	0.848 lies between 0.857 & 0.777
		$\therefore \frac{7}{9} < \frac{95}{112} < \frac{6}{7}$
18.	(A)	Given figure has 4 lines of symmetry
		1

19. (C) The above given table is in the form of y = 9x - 2

20. (B) LHS =
$$\frac{1}{3}y^2 - \frac{4}{7}y + 11 - \frac{1}{7}y$$

 $+ 3 - 2y^2 - \frac{2}{7}y + \frac{2}{3}y^2 - 2$
 $= (\frac{1}{3}y^2 - 2y^2 + \frac{2}{3}y^2) + (-\frac{4}{7}y - \frac{1}{7}y - \frac{2}{7}y)$
 $+ (11 + 3 - 2)$
 $= (-\frac{y^2 - 6y^2 + 2y^2}{3}) + (-\frac{4y - y - 2y}{7}) + 12$
 $= (-\frac{y^2 - 6y^2 + 2y^2}{3}) + (-\frac{4y - y - 2y}{7}) + 12$
 $= (-\frac{y^2 - 6y^2 + 2y^2}{3}) + (-\frac{4y - y - 2y}{7}) + 12$
 $= (-\frac{y^2 - 0y^2 + 2y^2}{3}) + (\frac{-4y - y - 2y}{7}) + 12$
 $= (-\frac{y^2 - 0y^2 + 2y^2}{3}) + (\frac{-4y - y - 2y}{7}) + 12$
 $= (-\frac{y^2 - 0y + 12)$
21. (C) Given AB||CD
 $\Rightarrow \angle DAB + \angle ADC = 180 \rightarrow (1)$
Given AD||BC $\Rightarrow \angle D$
 $AB + \angle ADC = 180 \rightarrow (2)$
From eq (1) & (2)
 $\angle ADG + \angle ADC = 2DAK + \angle ABC$
 $\therefore ADC = \angle ABC$
22. (D) Given area of first square = 36cm² = (6cm)²
 $\therefore S_1 + 6 cm^3$
 $\therefore S_1 + 5 + S_1 + 6 cm + 8cm + 10cm = 24cm$
 $\ln AACD, AC = 24cm & 8C = 10cm & \angle C = 90$
 $\therefore AB^2 = (24cm)^2 + (10cm)^2 = 576 cm^2 + 100$
 $AB^2 = (26cm)^2$
 $\therefore AB = 26cm$
 $= \frac{15}{2} + 4 - \frac{112}{15} = \frac{27 + 120 - 224}{30}$

34. (A,B,C)

Except option 'D' remaining options are true

35. (B,C,D) In
$$\triangle$$
ABD,

$$90^{\circ} + 30^{\circ} + x = 180^{\circ}$$
$$x = 180^{\circ} - 120^{\circ} = 60^{\circ}$$
$$\ln \Delta BCD, \text{ given BC} = CD$$
$$\Rightarrow \angle CDB = \angle CBD = y$$
$$y + y + 30^{\circ} = 180^{\circ}$$
$$2y = 180^{\circ} - 30^{\circ} = 150^{\circ}$$
$$y = \frac{150^{\circ}}{2} = 75^{\circ}$$
$$x + y = 60^{\circ} + 75^{\circ} = 135^{\circ}$$

REASONING

36. (B) The innermost line is Pink instead of Green.

- 37. (C) The series follows 2 rules:
 - (1) The number written in words is reduced by 1 every time. This number is written in words and in numerical form alternately.
 - (2) The second number increases by 1 every time.

By following these rules, the next term will be THREE-5.

38. (C) After studying the given information carefully. We observe that D < A < B > C

B > C > A > D

∴ B > A

Everytime the shape turn 90° right. The 39. (C) colours of a shape from top to bottom moves next below shape. Bottom shape colour moves to top position shape.

Statement-2 : 8th July 2017 is a saturday Hence both statements are true.

47. (B) 3

According to the given picture, B, E and A have four friends means

1, 3, 4 are represents the letters B, E, A F is friend with only B and E F represent number 5 B and E reperesents 4 and 1

Therefore A represent number 3

48. (B) False

Minivan is left most corner

Minivan is not parked between the pickup and sedan

So statement 3 is false.

(from balance 1)

Kangaroo + Pig = Elephant

(from balance 2)

2 Pigs + Monkey = Elephant + Kangaroo

(from balance 3)

Elephant + Kangaroo = 2 Pigs + Monkey (3) Elephant - Kangaroo = Pig (2) 2 Elephant = 3 Pigs + Monkey

2 (Pig + 2 Monkeys) = 3 Pigs + Monkey 2 Pigs + 4 Monkeys = 3 Pigs + Monkey 3 Monkey = Pig Elephant = 3 Monkeys + 2 Monkey Elephant = 5 Monkeys

50. (C) There are 2 shortest paths from A to B and there are 3 shortest paths from B to C. Therefore, the number of ways of taking the shortest path from A to C by passing through B is 2 × 3 = 6 ways.